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Abstract 

The goal of this research is the development of new fundamental insights and methodologies to exploit 
structural properties of large-scale dynamical networks in order to quantify their inherent fundamental lim­

its on performance and robustness and characterize their resu!tingfundamental tradeoffs. The primary focus 
of the project was on revealing foundational role of underlying dynamical structure and sparse information 
structure of large-scale dynamical networks in emergence of severe theoretical fundamental limits on there­

sulting performance and robustness in such networks. Our research results provide a novel unified approach 
for analysis and synthesis of large-scale dynamical network. We have developed an axiomatic general the­

ory of systemic measures for performance and robustness analysis and synthesis of large-scale dynamical 

networks. The proposed theory evolves around introducing the new classes of convex and Schur-convex 
systemic measures that capture transient, steady-state, macroscopic, and microscopic features of dynamical 
networks. The notion of systemic measure provides a unifying umbrella under which an integrated theory 

of hard limits based on operator, graph, optimization theories can be developed to systematically deal with 
uncertainty, performance, and robustness in distributed control and dynamical systems. Our research re­
sults are highly relevant for analysis and synthesis of engineered and natural dynamical networks. In the 
fo llowing pages, I will briefly explain our theoretical achievements. More details have been provided for 
selected number of topics. Proper citations to our published papers have been provided for further details 
and readings. 



Emergence of Fundamental Limits in Spatially 
Distributed Dynamical Networks and Their Tradeoffs 

Summary of Accomplishments and Research Results 

1 Systemic Performance and Robustness Measures 

One of the simplest class of dynamical networks that our proposed methodology can be explained in a 

simple setting is the class of first-order linear consensus networks with the following dynamics 

.i( t) 

y(t) 

- Lg x(t) + ~(t) 
x (t) - x(t)ln 

(1) 

(2) 

where x (t) , y(t) E ~n are the state variable and output of the dynamical network, respectively. Then x 1 

vector of all ones is denoted by ln and x (t) is the average of all state variables x1(t) , . . . ,xn(t) . The 

exogenous disturbance input ~ ( t) captures the uncertain effect of the environment on the dynamics of the 
network, which is assumed to be a zero-mean Gaussian white noise with unit covariance. This dynamical 
network is defined over a graph Q = (V (Q) , E(Q) , w (Q) ) , where V (Q) is the set of nodes and E(Q) is 

the set of edges. The weight function w (Q) is a map that is defined from the set of edges to the set of 

strictly positive real numbers and it captures the coupling structure of the underlying dynamical network. 
The Laplacian mattix of the underlying graph of the network is denoted by Lg. The Laplacian matrix is 

a positive semidefinite matrix and can be used to find many properties of the corresponding graph. The 

(i, i) diagonal element of the Laplacian matrix is equal to the sum of the weights associated to every edge 
incident to node i and its ( i , j ) off-<iiagonal element is equal to weight of edge connecting nodes i and j , 
otherwise it is equal to zero. In the following discussions, we assume that all underlying graphs are finite, 

simple, undirected and connected, and therefore, the smallest Laplacian eigenvalue is always equal to zero. 

Therefore, the dynamical network (1)-(2) is marginally stable. However, this network is well-defined and 

its marginally stable mode is not observable from the output. 
The linear dynamical network (1 )-(2) can be viewed as a system that has been already stabilized by a 

linear state feedback control law and operating in closed-loop. The sparsity pattern of the Laplacian matt·ix 

Lg is imposed by the topology of the underlying graph Q and the corresponding weight function, which 

models the coupling structure and strength among the subsystems in the closed-loop system. The existence 
of such inherent sparsity-constraints on the topology of the underlying graphs play a foundational role in 

emergence of severe theoretical fundamental limits on the global performance and robustness of this class 

of dynamical networks. We use the following simple but illustrative example to conceptualize the idea. 

Example: Let us index the Laplacian eigenvalues in ascending order Al ~ A2 ~ · · · ~ An, where the 

smallest eigenvalue >.1 is always equal to zero for connected graphs. The steady state variance of the output 

of the network (1 )-(2) is an example of a performance and robustness measure. This measure quantifies the 
expected dispersion of the state of the network in state steady [26] and is indeed equal to the H2-norm of the 

system from the disturbance input to the output of the network and can be calculated in terms of Laplacian 

eigenvalues as follows 

P1-1.2 (N(Lg)) (3) 



• • • • • 
(a) (b) (c) 

Figure 1: Among all connected graphs with five nodes, the value of the systemic measure (3) is (a) maximal for a 
path graph among all graphs as well as among all tree graphs, (b) minimal for star graph among all tree graphs, and 
(c) minimal for a complete graph an1ong all graphs. 

where IE[.] is the expected value operator. Figure 1 shows a simple but illustrative example that how measure 

(3) depends on the topology of the underlying graph of networks. In our results, we take an axiomatic 

approach to classify several important performance and robustness measures for linear consensus networks. 

Let us represent the set of all linear consensus networks in the form (1)-(2) that have a common initial 

condition xo by !Jl( xo). Therefore, every dynamical network in !Jl( xo) can be represented using its Laplacian 

matrix using symbol N(Lg). 

Definition 1 For every given N(Lg1 ), N(L~h ) E !Jl(xo), the addition and scalar multiplication operations 
on !Jl( xo) is defined as follows: 

(ii) cr.N ( Lg1 ) = N ( aLg1 ) for all positive scalars a. 

The addition operation of two linear consensus networks is equivalent to the edge union operation on the 

underlying graphs of the two networks. The scalar multiplication operation of a linear consensus network is 

equivalent to scaling the weight function of the underlying graph . Let us denote Lb to be the Moore-Penrose 

pseudo-inverse of Lg , which is a square, symmetric, doubly-centered and positive semidefinite matrix . 

Definition 2 (Convex Systemic Measures) For a given space of linear consensus networks !Jl(xo), a sys­
temic measure is an operator p : !Jl(xo) ---1 JR+ with the following properties: 

(i) Positivehomogeneityofdegree - 1: p(KN(Lg1 )) = K.- 1p(N(Lg1 ) ) forall K.>O, 

(ii) Monotonicity: If Lb
1 

::5 Lb
2 

then p(N(Lg1 ) ) ~ p(N(Lg2 )) , 

(iii) Convexity: p(N(aLg1 + (1 - a) Lg2 )) ~ a p(N(LgJ) + (1 - a) p(N(Lg2 )) , 

forall N (Lg1 ),N(Lg2 ) E 1Jl(.7:o) and all 0 ~a~ 1. 

The monotonicity property implies that a systemic measure p is subadditive over the set of all linear 

consensus networks. This property can be interpreted as a fundamental tradeoff between systemic measures 

and sparsity of the underlying graph. If we add more edges to an existing graph, the value of the systemic 

measure will decrease [3 , 4]. The homogeneity property implies that among all graphs with identical inter­

connection topologies, the ones with larger (stronger) coupling weights have smaller systemic measures . 

Zeta function based convex systemic measures: These important class of systemic measures are defined 

using the spectral zeta function of Laplacian eigenvalues of the underlying graph as follows 

(4) 

2 



for all1 ::::; p ::::; oo and k > 0, where the corresponding zeta function of the dynamical network (1)-(2) with 

Laplacian eigenvalues Ai fori = 2, ... , n is defined by 

n 
(5) 

i= 2 

where Tr(.) is the matrix trace operator. In our results, we show that (4) is a convex systemic measure 

according to Definition 2 that includes several well-known performance and robustness measures as its 

special cases [1 , 3]. When p -t oo and k = 1, the systemic measure reduces to >-2 \ where >-2 is the 

algebraic connectivity of graph Q. This systematic measure approximately measures the convergence time 

of the consensus process. For p = 1 and k = !, the systemic measure (4) is equal to the square of the 

H 2-norm of the first-order linear consensus network (see equality (3)) , and when p = 2 and k = ~, its 

value is equal to the H 2-norm of a second-order linear consensus network [1] . 

Practical interpretations of systemic measures: In [26], we show that 1£2-based systemic measures have 

interesting physical interpretations. In a synchronous power grid subject to a random initial condition (dis­

turbance) , the corresponding H 2-based systemic measure is equal to the total resistive power loss in the 

network. This implies that in order to render all states to the consensus state some resistive power must be 

wasted throughout the network. Our results show that the least achievable values of the resistive power loss 

in a power grid is lower bounded by some constants that only depend on the characteristics of the underlying 

graph of the network. Another result in our paper [26] shows that H 2-based systemic measure for a group 

of autonomous vehicles participating in a formation is equal to the total kinetic energy required to render the 

entire group to the consensus state. We are currently investigating to find practical interpretations of various 

systemic measures in dynamical networks. 

Remark 1 The value of systemic measure ( 4) for isospectral graphs, graphs with identical set of eigenval­
ues, are equal. This is one of our research thrusts for next year. 

The concept of convex systemic measure can be extended further by considering the following class of 

measures that are defined based on notion of Schur-convex function s. 

Definition 3 (Schur-convex systemic measures) For a given space of linear networks SJl(xo), a schur­

convex systemic measure is an operator p : SJl(xo) -t JR+ that satisfies monotonicity property (ii) and 
convexity property (iii) in Definition 2 and is also orthogonally invariant, i.e. , 

p(N(Lg)) = p(N(ULgUT)) , 

for all orthogonal matrices uuT = uru = In. 

1-l.p-based Schur-convex systemic measures: For a given linear consensus network N(Lg) E SJl(xo), 
suppose that G(s) E c nxn is the transfer function of N(Lg) from disturbance input to its performance 

output. Our research results in [3] show that the following class of performance and robustness measures 

are Schur-convex systemic measures according to Defi nition 3: 

(6) 

where the Schatten p-norm for every 1 ::::; p ::::; oo is defined using the singular values of G (jw) by 

IIG(jw)ll~· = L~=l ai (G(jw))P. When p = oo, thi s systemic measure is equal to >-2 \ which is in 

3 



fact the input-output 1{00-norm of the network. This measure can be viewed as the maximum system gain 

when inputs are taken over all measurable signals with finite energy. For a given linear consensus network 

N(Lg) E !Jl(xo), the H p-based systemic measure (6) characterizes performance and robustness properties 

of a network from an input-output system theoretic perspective. On the other hand, the zeta-function-based 

systemic measure (4) can be related to structural properties of the underlying graph of the network . Our re­

search results [I , 3] show that there is an inherent relationship between these two class of systemic measures 

and each one can be calculated by knowing the other one. 

Schur-convex systemic measures gener ated by Schur-convex sums: The second important class of 

Schur-convex systemic measures is generated by sums of convex decreasing functions (also known as 

Schur-convex sums) of Laplacian eigenvalues [3] . Suppose that f : IR+ -7 lR is a decreasing convex 

function . For every N(Lg) E !Jl(xo), the class of measures that are defined by 

n 

P"E.J (N(Lg)) = Lf(.Ai), (7) 
i=2 

are Schur-convex systemic measure. For example, all measures generated by f(.A) = _A-P fall into this 

category. This includes H 2-norm of the fi rst-order and second-order linear consensus networks con·espond 

to convex functions for p = 1, 2. Another important class of Schur-convex systemic measures is the class of 

entropy-based measures for linear consensus networks that are generated by f(.A) = - log A, which can be 

interpreted as a measure of unce1tainty. 

Our research results [1 ,3] show that convex and Schur-convex systemic measures can be related to the 

structural properties of the underlying graph of dynamical networks. In some applications, it may not be 

possible to express explicitly the conesponding systemic measure in terms of the structural properties of the 

underlying graph of the network. Therefore, we have developed a novel methodology to obtain tight lower 

and upper bounds for the class of systemic measures. In the following, some of the key ideas behind our 

approach along with some selected results are explained. 

1.1 Fundamental Limits on the Best Achievable Systemic Performance and Robustness 

For a given dynamical network N(Lg) E !Jl(xo) with underlying unweighted graph Q that consists of n 
nodes, the maximal and minimal values of the zeta-function-based systemic measure are bounded by 

( n -1) 1.
5 n -1 [ ( (n) ) ] :S Pt;

1 
(N(Lg)) :S -- 1 + - m diam(Q) , 

2v'(h + 82 2n 2 
(8) 

where m is the total number of edges, di is the degree of node i, and 8a := I:~=l df for a = 1, 2. The 
diameter of Q is denoted by diam(Q), which is basically the longest shortest path in the graph. This result 

was reported in [L] that shows explicitly how the value of a systemic measure depends the microscopic (e.g., 

degree nodes) and macroscopic (e.g., graph diameter and total number of edges) features of the underlying 

graph of the network. According to (3), we can quantify fundamental limits on the best achievable H2-norm 

of a dynamical network with arbitrary interconnection topology as follows 

(9) 

These bounds represent hard limits and scale with the size of the network. The lower bound is achieved 

iff Q is a complete graph, and the upper bound is achieved iff Q is a path (chain) graph. One can extract 

4 



more detailed information about performance and robustness properties of dynamical networks by exploit­
ing the specific structural properties of their underlying graphs. For instance, let us consider the class of 
linear consensus networks with at least five nodes and tree interconnection topologies. The H 2-norm sys­
temic measure of such networks is always worse (greater) than ( n - 1) / ffn and always better (less) than 
J ( n2 - 1) / 12. The lower hard limit is achieved iff Q is a star graph, and the upper hard limit is achieved iff 
Q is a path graph. These hard limits imply that the H 2-based systemic measure of linear consensus networks 
with tree structures scale with 0( y'n) as n --+ oo. 

The inherent fundamental limits on performance and robustness in dynamical networks can also be 
quantified in terms of macroscopic features of the network, e.g., spectral properties of the underlying graph. 
We explain one of our interesting results by limiting our discussion to the class of Schur-convex systemic 
measures (7) with an additional assumption that j().) --+ 0 as ).. --+ oo. For a given dynamical network 
N(Lg) E SJt(xo), we construct a new dynamical network by only adding at most knew arbitrary weighted 
edges to the underlying weighted graph. If we denote the resulting network by N ( L'(;ew), then there is a 
fundamental limit on the best achievable values for the systemic measure of the new dynamical network, 
which is quantified by 

n 

PL-J (N(L'gew )) ;::: L j()..?ld) , (10) 
i=k+2 

where )..?1d for i = k + 2, ... , n are the last n - k - 1 largest Laplacian eigenvalues of the original graph of the 
network before adding new edges. This result implies that the performance and robustness of a dynamical 
network cannot be improved beyond some limits by increasing the connectivity of the underlying graph. 
The lower hard limit in (10) only depends on some of the Laplacian eigenvalues of the original dynamical 
network and is independent of the weights of the new edges. 

The existence of hard limits in large-scale dynamical networks motivates us to discover methodologies 
that allow us to improve their performance and robustness by optimizing the corresponding systemic mea­
sures and trying to reach the best achievable hard limits . In [31] , we build upon these notions and results to 
investigate a general form of combinatorial problem of growing a linear consensus network via minimizing 
a given systemic performance measure. Two efficient polynomial-time approximation algorithms are de­
vised to tackle this network synthesis problem: a linearization-based method and a simple greedy algorithm 
based on rank-one updates. Several theoretical fundamental limits on the best achievable performance for 
the combinatorial problem is derived that assist us to evaluate optimality gaps of our proposed algorithms. A 
detailed complexity analysis confirms the effectiveness and viability of our algorithms to handle large-scale 
consensus networks. 

1.2 Quantification of Tradeoffs Between Sparsity and Systemic Measures 

The underlying dynamical structure of a network depends on coupling structure among the subsystems 
which are usually imposed by physical laws or global objectives. For example in linear consensus network 
(l)-(2), the Laplacian matrix represents coupling structure in the closed-loop system, which is the result 
of sparse information structure in the underlying controller array. In this research thrust, we focused on 
revealing foundational role of sparsity features of the underlying graph of networks in emergence of se­
vere theoretical fundamental limits and tradeoffs on the resulting performance and robustness in large-scale 
dynamical networks. Our goal was to discover and quantify a variety of mathematical (Heisenberg-like) 
inequalities explaining such fundamental limits and tradeoffs. In our research results, we characterize the 
inherent tradeoff between some classes of systemic measures and sparsity features of linear consensus net­
works with unweighted underlying graphs. Let us denote the adjacency matrix of the underlying graph of 

5 



network (1)-(2) by Ag. We define the total number of nonzero elements of the adjacency matrix , which is 

denote by IIAg llo, as our sparsity measure. We quantify the resulting fundamental tradeoffs in terms of this 
sparsity measure in multiplicative and additive forms by 

and (
2Pc,1 (Lg) -1) 

diam(Q) IIA II 
n (n - 1) 

+ go ::; 2 ' 

where diam(Q) is the diameter of the underlying graph and n is the size of the network. We interpret the 

implications of these inequalities by considering two scenarios for dynamical networks with the same size. 

The inequality in the left asserts that the minimum (best) achievable levels of zeta-based systemic measure 

for sparse networks is higher. For all dynamical networks with identical diameters, the inequality in the 

right implies that the maximum (worst) achievable levels of systemic measures for networks with more 

edges is smaller. Among all networks with identical number of edges, the ones with larger diameters have 

higher values of systemic measures. Previously, we showed that Pc,
1 
(Lg ) = PH

2 
(Lg )2 . Therefore, the 

above fundamental inequalities explain the quality of disturbance propagation in terms of sparsity features 

of linear consensus networks. 

In [31] , we extend this proposed methodology to broader classes of systemic measures. The key idea 

of our approach is based on the monotorlicity property of systemic measures. This property implies that by 

improving connectivity of the underlying graph the value of systemic measure decreases. We have developed 

a rigorous mathematical framework to quantify the interplay between systemic measures and sparsity more 

explicitly using tight inequalities. In [20, 33], we consider general linear dynarrlical networks on graphs 

(beyond consensus networks) and investigate various roles of sparsity in emergence of fundamental limits 

and tradeoffs on stability and performance. 

2 Sparsity and Spatial Localization Measures for Distributed Networks 

The research results presented in this section are pushing the known boundaries in spatially distributed sys­

tems towards new methodologies to study sparsity and spatial localization in large-scale dynamical network 

in a systematic manner. The following discussion is based on our recent work reported in [27] . 

The omnipresence class of spatially decaying systems. Typical examples of spatially decaying systems 

include linearized models of spatially distributed power networks with sparse interconnection topologies , 

linearized models spatially distributed networks of autonomous agents in formation , spatially discretized 

models of infinite-dimensional systems with partial differential operators with constant coefficients, and 

many more. In our research results, we assume that the underlying spatial domain is discrete, i.e., <G = Z 

and the state-space operators of system 

?j; (t ) 

y(t ) 

A'ljJ (t ) + Bu(t), 

C·tjJ (t) + Du(t) 

( 11) 

(12) 

are infinite-dimensional matrices. In order to understand the asymptotic behavior of localization techniques, 

we quantify spatial decay property by means of coupling weight functions. The Euclidean norm is denoted 

by 1.1. A positive nondecreasing function w on Z is a weight function if it satisfies : w(k) ::;> 1 and w(k ) = 

w( - k) for all k E Z. 

Definition 4 For 0 < q ::; 1, the coupling weight function w is called admissible if there exist a companion 
weightfunction u, an exponent() E (0, 1), and a positive constant D such that 

6 



(a) w(k + l) ::; w(k) u(l) + u(k) w(l) for all k, l E Z, 

(b) ~~t iiuX[-r,rJ II
2

_:q + t ll w·u-1 (1 - X[-r,rJ )iloo::; Dt
1- e forallt 2: 1. 

The function X[- r ,r] is the characteristic function on the interval [ - T , T]. The first condition implies 
that w is submultiplicative, i.e. , w(k + l) ::; w(k) w(l) . Typical examples of admissible coupling weight 
functions that appear in various applications are subexponential weights w(k) = ealkltl for a > 0 and 
0 ::; fJ < 1, and polynomial weights w(k) = (1 + lkl) 8 for s 2: 0. More general weights are mixtures of the 
form W(k) = eajkjtl (1 + lkl) 8 

( log (e + lkl) r fOr (T 2: 0. 

Definition 5 For a fixed exponent 0 < q ::; oo and admissible coupling weight function w, the class of 

matrices Sq ,w(Z ) consists of all spatially decaying matrices A = ( aij) i,jEZ such that A is bounded with 
respect to the matrix norm 

for 0 < q < oo, and by 

IIAIIsoo,w(Z) := sup laijl w(i - j). 
i ,jEZ 

for q = oo. In fact, the matrix norm (13) is a quasi-norm for 0 < q < 1. 

(14) 

The matrix norm inherits the key submultiplicative property from the coupling weight function, i.e., 

IIABIIsq,w(Z) ::; II AIIsq,w(Z) IIBIIsq,w(Z) · This property turns Sq,w(Z ) into an interesting mathematical 
object so called q-Banach algebra for 0 < q ::; 1 and Banach algebra for 1 ::; q ::; oo that is closed 
under addition and multiplication operations for all 0 < q ::; oo, i.e., if A , B belong to Sq,w(Z), then 
A + B E Sq ,w(Z) and AB E Sq,w (Z) . One of the fundamental properties of the class of spatially 
decaying matrices Sq ,w (Z) is that it is inverse-closed in B( e2 (Z)) (the Hilbert space of all bounded matrices 
on f 2 (Z)) , i.e., if for every A E Sq ,w(Z ) that is invertible on f 2 (Z)) ,.we have that A- 1 E Sq,w (Z) [27] . 

Definition 6 For a fixed 0 < q ::; oo, a linear system ( 11 )-( 12) is called spatially decaying on Z with respect 

to an admissible coupling weight function w if its state-space matrices A , B , C, D belong to Sq ,w(Z ). 

The class of spatially decaying linear systems is closed under basic system operations such as _series, 
parallel, and feedback interconnections. 

Inherent sparse information structure of linear-quadratic regulators (LQR). In our first major result, 
we consider the class of spatially decaying linear systems defined over Sq,w (Z ) for 0 < q ::; oo (Definition 
6). One of the fundamental problems in the context of spatially distributed systems is to investigate structural 
properties of the linear-quadratic regulator (LQR) problem for spatially decaying system (11)-(12) with cost 
functional 

J('I/Jo, u) = fo00

('1/J* Q'I/J +u*Ru)dt. (15) 

Suppose that weight matrices Q and R are self-adjoint and positive definite and (A , B ) is exponentially 
stabilizable and ( Q, A) is exponentially detectable in B(e2 (Z)) (the Hilbert space of all bounded matrices 
on e2 (Z)). The LQR feedback control law is given by u = - K 'ljJ = - R- 1 B * X 'ljJ where X is the unique 
positive-definite solution of the algebraic Riccati equation 

A* X+ XA - XBR- 1B*X + Q 0. (16) 
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The spatial decay properties of the quadratically optimal controllers and fi ltering problems for spatially 

decaying systems are closely related to the algebraic properties of the corresponding algebraic Riccati equa­

tions. We have the following fundamental result for the class of spatially decaying systems with bounded 

operators. 

Theorem 1 ( [27]) For a fixed exponent 0 < q ::; oo, suppose that A , B , Q, R belong to Sq,w(Z) . Then the 

unique positive-definite solution of the algebraic Riccati equation (16) also belongs to Sq,w (Z) . Further­

more, the closed-loop matrix A - R - 1 B * X generates exponentially stable semigroup on Sq ,w (Z). 

The outcome of Theorem 1 states that the LQR feedback control law K = ( Kij \,jEZ is spatially 
localized, i.e., 

(17) 

where Co = IIKIIsq,w(Z) is a finite number. This implies that the underlying information structure of the 
optimal control law is sparse in space and each local controller needs to receive information only from 

some neighboring subsystems (and not from the entire spatially distributed system). The implications of our 

results for spatially decaying systems lay foundations of a general theory to discover fundamental limits of 

feedback control strategies in spatially distributed systems due to sparse information structures. 

Fundamental limits on best achievable degrees of spatial localization. In order to characterize a funda­

mental limits on interplay between stability margins and optimal performance loss in spatially distributed 
systems, we approximate the corresponding LQR feedback gain K by a sparse feedback gain K'I-nearest for 

a given truncation length 'I > 0 as follows 

if li- ji :S 'I 

if li- jl > 'I 
(18) 

By applying small-gain theorem, we can characterize a fundamental limit in the form of a lower bound 

for stabilizing truncation lengths for different admissible coupling weight functions [27]. For the subexpo­

nential coupling weight function with parameters a > 0 and 0 ::; f3 < 1, the sparse feedback controller 
K'I- nearest is exponentially stabilizing if the truncation length 'I satisfies the following inequality 

1 

'I > 'Is = (I_ log ( IIKIIsq,w(Z) IIBIIB(f2(Z)) sup O'max(G(s))) ) fj, 
a Re(s)>O 

(19) 

where G(s) = (sl - (A+ BK)) - 1 is the transfer function of the closed-loop system. A fundamental 

tradeoff emerges between truncation length and performance loss. We define the performance loss as the 
expected value of the quantity IJ(xo, K x ) - J( xo, K 'I-nearestx)) I over all random Gaussian initial conditions 

with zero mean and identity covariance matrix . Our results show that the performance loss asymptotically 
converges to zero as 'I -+ oo [27]. 

Fundamental tradeoffs between sparsity and spatial locality. Let us consider an ideal sparsity measure 

whose value returns the maximum number of nonzero entries in all rows and columns of a matrix, i.e., 

11KIIs0 ,1 (Z) := max { sup II K('i , .)ll eo(z), sup II K(. , j)lleo(z) } , 
tEZ JEZ 

where K(i, .) is the i' th row and K( .,.i) the j'th column of matrix K. The .e0 (Z) quasi-norm of a vector is 

the cardinality of the set of its nonzero ent:Ii es. The So,1-measure (i.e., the value of ll ·llsa,1 ) is specifically 
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Promotes sparsity Promotes spatial localization 

q 
0 1 

t 
So, I (G) 

Figure 2: For 1 ::; q ::; oo, Sq ,w(Z ) is a Banach algebra. However, Sq ,w (Z) for 0 < q < 1 is a quasi-Banach algebra. 

The analysis of spatially djstributed systems which are defined over q-Banach algebras for 0 < q ::; 1 are much more 

subtle than those systems thal are defined over Banach algebras. 

tailored for spatially distributed systems as it is a suitable measure for sparsity and spatiaJ localization simul­

taneously. The Sq,w-measure (i.e., the value of ll·llsq,w(z)) of a matrix can be considered as an asymptotic 

approximation of its 50,1-measure, since the following limit holds 

lim IIKII~ (Z) = 11KIIs0 1(Z)> q-tO q,w ' 
(20) 

for all spatially decaying matrices with bounded entries. This implies that the class of spatially decaying 

matrices Sq ,w (Z ) for 0 < q ::; 1 are sparse and enjoy certain interesting diagonal decay properties. 

An important fundamental tradeoff emerges when exponent q varies from zero to infinity. On one 

hand, when q tends to large numbers and gets closer to oo, the Sq,w- measure asymptotically approximates 

S00,w-measure and becomes an ideal spatial locality measure. On the other hand, when q tends to small 

numbers and gets closer to zero, the S q,w-measure asymptotically approximates So,1-measure and becomes 

an ideal sparsity measure. We prove that there exists an exponent q* < 1 such that the Sq ,w (Z)- measure 

approximates the ideal sparsity measure So,1 in probability for all 0 < q < q* . In order to present an explicit 

and sensible result, we focus on the class of exponentially decaying random matrices of the form 

for some given parameters rJ > 0 and 8 E (0, 1). The coefficients Tij are drawn from the continuous 

uniform distribution U( - 1, 1) . For a given truncation threshold 0 < t: < 1, the sparsity indicator function 

for a random subexponentially decaying matrix K E R 0',8 (Z ) is defined by 

WK,w (q ,c: ) := 2l 8~1 q~wj ' 
rJV m e· + 1 

IIKII1 
(21) 

where L.J is the floor function . For proper values of exponent q and parameters in the coupling weight 

function w, the sparsity indicator function can take values sufficiently close to one. This implies that ma­

trix K E R0',8(Z ) can be approximated by a sparse matrix whose So,1-measure is close to I IK I I~q ,w in 

probability. 

Theorem 2 ( [27]) Consider the class of matrices R 0',8 (Z ) and the subexponential coupling weight function 

w' with parameters rJ
1 = ~for some 8 E (0 , 1) for some f) E (0 , 1 ). Let us define parameter (3 = q ln C 1

. 
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Then,for every K E R a,8 (Z ) we have 

lim lP'{ lwK,w' (q , E) - 1'l <Eo} 
E---tO+ 

1, (22) 

for every Eo > 0, where 1' := ]
0
00 e - (l - 7J")t tl dt. 

The result of this theorem provides an algorithm to approximate the LQR feedback gain K with a near­

optimal sparse matrix. Since IJ and 8 are known, we can pick the positive parameters rJ and (3 such that 
1 ' ::::::; 1, for example, 1 ' = 0.95. If we fix parameter (3, the sparsity indicator function becomes a single 
variable function of exponent q and its value can be calculated for range of parameters 0 < q ::; 1. Then, 
one can calculate an exponent q* such that the value of the sparsity indicator function stays arbitrarily 

close to 1 ' for all 0 < q < q*. The number IIKII~:•,w' represents an optimal tradeoffbetween sparsity 

and spatial localization measures. Furthermore, we can extract more information from exponent q* and 

compute an optimal truncation length using the formula 'To = IJ <Jt. By combining this result with (19), a 
near-optimal stabilizing truncation length for the LQR feedback gain is given by 

'Iop = max {'To , 'Is}· (23) 

Mathematical foundation of notions of sparsity in spatially decaying systems. The notion of sparsity 
in spatially decaying systems can be generalized to more abstract ground via quasi-Banach algebras, which 

is a complex vector space of matrices A on Z equipped with q-norm II · IIA for 0 < q ::=:; 1. The quasi­
Banach algebras enjoy similar basic properties to Sq ,w (Z), e.g., it is closed under addition and multiplication 

operations. 

Definition 7 ( [27]) For 0 < q ::; 1, a q-Banach algebra A of matrices equipped with q-norm II · II A is 
called proper if it is: (i) closed under the complex conjugate operation, (ii) a subalgebra of B( £2 (Z)) and 

continuously embedded with respect to it, and (iii) a differential Banach subalgebra of B( £2 (Z) ). 

Our results show that a proper q-Banach algebra is inverse-closed. This enable us to define the class of 
linear systems over proper q-Banach algebra and study their exponential stability. Moreover, we prove that, 
under standard assumptions, if the coefficients of the algebraic Riccati equation belong to a proper q-Banach 

algebra A, then X E A . 

2.1 Interplay Between Spatial Localization Measures and Systemic Measures 

In our research results [26], we show that for the class of linear consensus networks (1)-(2) with n ~ 3, the 
following fundamental limit emerges between the ideal sparsity measure and zeta function based systemic 

measures 
n - 1 

P(1 (Lg) IIAgllsa,l ~ -
4
-, (24) 

where Ag is the adjacency matrix of the underlying unweighted graph of the network. For networks with 
identical number of nodes, this fundamental tradeoff asserts that by improving local connectivity in a net­

work the minimum (best) achievable level of the systemic measure decreases. 
The PI believes that theses results can be extended to quantify fundamental tradeoffs between systemic 

measures and the class of Sq,w-measures for sparsity and spatial localization. This is extremely important 
as it will reveal several key network design principles and show the effects of spatial localization on global 

performance and robustness of spatially distributed dynamical networks. This objective is particularly chal­
lenging as the class of Sq,w-measures for 0 < q < 1 are nonconvex matrix norms and require us to develop 

our framework based on tools from quasi-Banach algebras . 
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3 Network Sparsification with Guaranteed Systemic Performance Measures 

A sparse consensus network is one whose number of coupling links is proportional to its number of sub­
systems. Optimal design problems for sparse consensus networks are more amenable to efficient optimiza­

tion algorithms. More importantly, maintaining such networks are usually more cost effective due to their 
reduced communication requirements. Therefore, approximating a given dense consensus network by a 

suitable sparse network is an important analysis and synthesis problem. In this chapter, we develop a frame­
work to produce a sparse approximation of a given large-scale network with guaranteed performance bounds 
using a nearly-linear time algorithm. First, the existence of a sparse approximation of a given network is 
proven. Then, we present an efficient and fast algorithm for finding a near-optimal sparse approximation of 
a given network. Finally, several examples are provided to support our theoretical developments. 

In [8 , 35], we specifically addressed the following network design problem: given a linear consensus 

network with an undirected connected underlying graph, the network sparsification problem seeks to re­
place the coupling graph of the original network with a reasonably sparser subgraph so that the behavior of 
the original and the sparsified networks is similar in an appropriately defined sense. Such situations arise 

frequently when real-world large-scale dynamical networks need to be simulated, controlled or redesigned 
using efficient computational tools that are specifically tailored for optimization problems with sparse struc­
tures . We develop a general methodology that computes sparsifiers of a given consensus network using a 
nearly-linear time O(m) 1 algorithm with guaranteed systemic performance bounds, where m is the number 

of links. Unlike other existing work on this topic in the literature, our proposed framework: (i) works for 
a broad class of systemic performance measures including 1i2-based performance measures, (ii) does not 
involve any sort of relaxations such as Po to f 1, (iii) provides guarantees for the existence of a sparse solu­
tion, (iv) can partially sparsify predetermined portions of a given network; and most importantly, (v) gives 
guaranteed systemic pelformance cettificates. 

While our approach is relied on several existing works in algebraic graph theory, our control theoretic 
contribution are threefold. First, we show that every given linear consensus network has a sparsifier net­
work such that the two networks yield comparable performances with respect to any systemic performance 

measure. Second, we develop a framework to find a sparse approximation of large-scale consensus net­
works using a fast randomized algorithm. We note that while the coupling graph of the sparsified network is 

a subset of the coupling graph of the otiginal network, the weights of links (the strength of each coupling) 
in the sparsified network are adjusted accordingly to reach predetermined levels of systemic performance. 
Third, we prove that our development can also be applied for partial sparsification of large-scale networks, 
which means that we can sparsify a prespecified sub graph of the original network to find an approximation 

of the network with fewer links. This is practically plausible as our algorithm can be spatially localized, if 
necessary, and it does not require to receive information of the entire coupling graph of the network. 

We develop a sparsification framework for the class of linear consensus networks governed by (1)­

(2) that provides performance guarantees with respect to a general class of systemic measures. First, we 
introduce a notion of approximation for the class of consensus networks . 

Definition 8 For a fixed constant E E [0 , 1], a consensus network N(Ls) is c:-approximation of N(L) if and 
only if 

(1 - c:)a < P (L) < (1 + c:)a 
- P (Ls) - ' 

(25) 

for every homogenous convex systemic measure p : £ n ---+ JR+ of order a > 0. 

1We use 6(.) to hide poly log log terms from the asymptotic bounds. Thus, f(n) E 6 (g(n)) means that there exists k > 0 
suchthatf(n) E O(g(n)logk g(n)). 
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Lemma 1 N(Ls) is an c. -approximation of N(L) if and only if the following inequalities hold 

(1 - c. )L j L s j (1 + c. )L. (26) 

This result is fundamental as it enables us to take advantage of monotonicity property of systemjc mea­

sures in our approximations. 

Existence of c. -Approximations: Among all c.-approxjmation of a given consensus network with a dense 

coupling graph, we are interested in its sparsifiers, i.e. , those networks with sparse coupling graphs. 

Definition 9 N (L 5 ) is a ( E, d) -sparsifier of a given network N(L) with n nodes if the following conditions 

hold: 

1. N (L s) is an c. -approximation ofnetworkN(L); and 

2. the coupling graph of N (L s) has at most dn/ 2 links (i. e., feedback gains). 

The second condition imp]jes that the average number of connected links to nodes in the sparsifier is at 

most d. In the following theorem, we show existence of sparsifiers for every given consensus network. 

Theorem 3 Suppose that a consensus network N(L) with coupling graph g = (V , £ , w ) and d > 1 are 

given. Then, there exists a consensus network N(Ls) with coupling graph 9s = (V , £5 , Ws) such that 

N(Ls) is a ( ~fl, 2d)-sparsifier of N(L) and £5 C £. 

Specifically, Theorem 3 shows that every given linear consensus network with dynamics (I )-(2) has a 

sparse consensus network such that the two networks yield comparable performances with respect to any 

systemic performance measure p : £n ---+ JR+ . 
In our next result, we show that every consensus network has a sparse consensus network such that: (i) it 

yields a better systemic performance than the original network, and (ii) the total weight sum of the coupling 

graph of the sparsifier is controlled, i.e. , it is less than a constant multiplier of that of the original network. 

For a given coupling graph with Laplacian matrix Land the set oflinks £,we denote the total weight sum 

of the coupling graph by 

Wtotai(L) := L w(e). 
eE£ 

(27) 

Theorem 4 For a given consensus network N(L) with coupling graph g = (V , E , w) and every d > 1, 

there exists a consensus network N(Ls) with coupling graph 9s = (V, £5 , w8 ) that has at most dn links and 

Es C £. Moreover, we have 

Vd+ 1 
( )

2 

Wrota!(Ls) :::; Vd _ 
1 

Wtotat(L) (28) 

and 

p(Ls) < p(L) , 

for every convex systemic measure p : £ n ---+ JR+. 

We note that linear consensus networks with smaller systemic performance measure are more desirable 

and they exhibit better network-wide performance. 

Computing Sparsifiers via Random Sampling: We employ a randomized algorithm to compute a (c., d)­
sparsifier of a given network. A randomized algorithm employs a degree of randomness as paJt of its 

12 



logic. Randomization allows us to design provably accurate algorithms for problems that are massive and 

computationally expensive or NP-hard. According to our discussions in [8, 35], we sample low-connectivity 

coupling bnks with high probability and high-connectivity coupling links with low probability. For a given 

consensus network N(L) with n nodes, we sample links of the coupling graph of this network NJ times in 

order to produce a (t: , 2M/n)-sparsifier of it. Let us denote probability of selecting a link e E £by 1r(e) 

that is proportional to w(e)r(e), where w(e) and r(e ) are the weight and the effective resistance of link 

e, respectively. In each step of sampling, we add the selected link e to the sparsifier network with weight 

w( e)/ (M 1r( e)). All details of this algorithm is explained below: 

Table l: Network Sparsification Algorithm 

Algorithm: 

Input: g = (V , £ , w) 

1: set g 8 to be the empty graph on V 

2: for i = 1 to M 

3: sample bnk e E [with probability 1r(e) 

add it toYs with bnk weight w(e)j(M1r(e)) 
4: endfor 

The following theorem provides us with a proof certificate that the above randomized algorithm is capa­
ble of generating a sparse approximation of a given consensus network. 

Theorem 5 For a given consensus network N(L), a fixed constant E E (1 / fo, 1] and an integer number 

M = O(nlog n /t:2), Network Sparsification Algorithm produces a (t:, 2Mjn)-sparsifier of network N(L) 
with high probabilit/. 

Network Sparsification Algorithm produces a sparsifier with with 0( n log n j t:2) bnks (i.e., feedback 
gains) in expectation and runs in approximately linear time O(m), where m is the number of links [8,35]. To 

do so, good approximations of all effective resistances are needed, and Spielman and Srivastava prove that 

O(log n) calls to a solver for symmetric diagonally domjnant (SDD) linear systems can provide sufficiently 
good approximations to all effective resistances. 

4 Performance and Robustness Measure for Time-Delay Networks 

In [11] , we investigate performance of noisy time-delayed linear consensus networks from a graph topologi­

cal point of view. Performance of the network is measured by the square of the 1{2-norm of the system. The 

focus of this work is on noisy consensus networks with homogeneous time delays affecting both the agent 
and all its neighbors. We derive an exact expression for the performance measure of the network in terms 

of time delay parameter and Laplacian eigenvalues of the underlying graph of the network. It is shown that 

the performance measure is a convex and Schur-convex function of Laplacian eigenvalues. We characterize 

the network topology with optimal performance. Furthermore, we quantify a fundamental limit on the best 

achievable performance based on performance of the optimal topology. 

In [17], we investigate topology design for optimal performance in time-delay noisy networks. Peifor­
mance of the network is measured by the square of the system's 1i2-norm. Our focus was on adding new 

2 An event holds with high probability if it holds with probability 1 - 0( n - a) for some a > 0 independent of n. 
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interconnections to enhance perfo rmance of the time-delay first-order connected consensus network . We di s­

cuss complexity of topology optimization for delayed networks and develop two practical methods to tackle 
the combinatorial eigenvalue problem without exhaustive search or eigen-decomposition . Furthermore, we 
compare these methods and discuss their degrees of optimality. In [32], we provide a comprehensive anal­

ysis on the effect of time-delay that reincarnates itself in the form of non-monotonicity, which results in 
nonintuitive behaviors of the performance as a function of graph topology. We present three methods to 

improve the performance by growing, re-weighting, or sparsifying the underlying graph of the network. It 
is shown that our proposed algorithms provide near-optimal solutions with lower complexity with respect to 
existing methods in literature. 

In [15] , we extend our focus and consider time-delay nonlinear consensus networks. We investigate 

stability and convergence properties of a class of nonlinear delayed consensus networks. Using tools and 
techniques from functional differential equations , sufficient stability conditions with respect to a common 
state as well as estimates on the convergence rate are derived. We characterize the limit (consensus) state for 
time-invariant sub-classes of these networks. More importantly, we specify under what conditions a delayed 

network exhibits petiodic synchronized solutions. We provide sufficient conditions for existence, uniqueness 
and stability of this interesting phenomenon. There are several important open problems remaining from 

this effort. 

5 Design of Sparse Feedback Controllers for Spatially Distributed Systems 

In the following efforts, we implemented our theoretical findings to compute sparse feedback controllers 
using existing optimization algorithms. 

5.1 Closed-Loop Feedback Sparsification Under Parametric Uncertainties 

In [19] , we consider the problem of output feedback controller sparsification for systems with parametric 

uncertainties. We develop an optimization scheme that minimizes the performance deterioration from that 
of a well-performing pre-designed centralized controller, while enhancing sparsity pattern of the feedback 

gain. In order to improve temporal proximity of the pre-designed control system and its sparsified counter­
part, we also incorporate an additional constraint into the problem formulation such that the output of the 
controlled system is enforced to stay in the vicinity of the output of the pre-designed system. It is shown 

that the resulting non-convex optimization problem can be equivalently reformulated into a rank-constrained 
problem. We then forn1ulate a bi-linear minimization problem to obtain a sub-optimal solution which satis­
fies the rank constraint with arbitrary tolerance. Finally, a sub-optimal sparse controller synthesis for IEEE 
39-bus New England power network is used to showcase the effectiveness of our proposed method. 

5.2 Output Feedback Controller Sparsification via 1-l2-Approximation 

In [9], we investigate the problem of optimal sparse output feedback control design for continuous linear 
time invariant systems. Unlike previously proposed methods where linear quadratic regulator control is 
modified to promote the sparsity level of the controller gain matrix , this research adopts the concept of 

'H2/'H00 control to develop an optimization program capable of synthesizing a structured sparse static con­
troller gain for which the overall closed loop system exhibits empirical frequency characteristics resembling 

that of the system controlled with a pre-designed centralized controller. We, moreover, modified our opti­
mization problem so that the control signal generated by the sparse controller fall s into the vicinity of the 
centralized control input, in the sense of £ 2- norm. Furthermore, we show that our optimization problem can 
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be equivalently reformulated into a rank constrained problem for which we propose to use a version of Alter­

nating Direction Method of Multipliers (ADMM) as a computationally efficient algorithm to sub-optimally 

solve it. There are several renaming issues to address regarding complexity of existing optimization tools . 

6 Systemic Performance Measures for Nonlinear Dynamical Networks 

6.1 Koopman Performance Analysis of a Class of Nonlinear Dynamical Networks 

In this research effort, we aimed at extending some of our systemic measures results to nonlinear dynamical 

networks. In [21], we have been able to utilize Koopman operator machinery to calculate a performance 

measures of a class of networks with nonlinear nodal dynamics. Let us consider the following Cucker-Smale 

type nonlinear network 

:i; = -L(x )x. (29) 

The elements of the state-dependent Laplacian matrix L( x ) = [lij ( x)] are a nonlinear function of distance 
between the agents, i.e., 

The output or observable of the network is 

y(t) = x (t) - lX(t) , 

where 1 is the vector of all ones and x(t) is the average of all states at timet 2: 0. Suppose that dynamical 
network (29) is in its equilibrium state, i.e., all agents have agreed upon a consensus state x* = al for some 
constant a. If we twitch the network by abruptly changing the state of the system to a random state (i .e., 

network (29) with a random initial condition), the required mean output energy to steer the network to its 

equilibrium (i.e., nominal form) is given by quantity 

(30) 

We have developed a methodology for quantifying this performance measure in terms of the Koopman 

eigenfunctions of the nonlinear network, and the eigenvalues of the corresponding linearized system at the 

equilibrium of the network, where the eigenvalues of the linearized system are indeed Laplacian eigenvalues 

of the underlying graph with opposite signs. More precisely, we have 

CXl 

Pss (L) = - L .A · ~ A. rPij 
i,j = 2 ~ J 

(31) 

where { .Ai }~1 is the sequence of Koopman eigenvalues, { ¢i}~1 is the sequence of Koopman eigenfunc­

tions , and { Ci}~1 is the sequence of Koopman modes. We show that .A1 = 0 and Ai < 0 for all i > 1 for 
connected coupling graphs. Our results reveal that the performance measure Pss(L) depends on the inter­
connection topology of the underlying graph. The reason is that Koopman eigenvalues can be represented 

in terms of Laplacian eigenvalues of the underlying graph. The effectiveness of our results are shown on 

several benchmark examples, including a Cucker-Smale type consensus network and first-order network of 

identical Kuramoto oscillators. Furthermore, as it is shown in Figure 4 of our paper [21], nonlinear networks 

with more dense coupling topology tend to have better performance features. We have gained some valu­
able insights from these results and identified potential difficulties of dealing with nonlinear networks. We 

believe that our operator theoretic approach along with advanced graph theory and some scalable approxi­

mation schemes will enable us to solve performance and robustness analysis of nonlinear networks. 
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6.2 Fundamental Limits on Performance of Autocatalytic Pathways 

I briefly outline the basics of our method to analyze autocatalytic dynamical networks [?,? , 34]. We will 

consider three scenarios. First, a minimal model of an autocatalytic system is analyzed. Then, a more 

general network topology with multiple intermediate metabolite reactions is considered. Third, we propose 
a general model for autocatalytic networks using graph theory tools. Finally, we propose a novel approach 

to characterize hard limits in interconnected networks of dynamical systems using duality concepts. The 

first step is development of a biologically motivated minimal model of autocatalytic dynamical networks 

that exhibits fundamental tradeoffs caused by autocatalysis. Analysis of robustness and efficiency tradeoffs 

for such canonical model provides a deep understanding of structural properties of autocatalytic networks as 

well as illustrates theoretical underpinning principles to design efficient and robust networks of dynamical 

systems. 

Minimal model of glycolysis. The central role of glycolysis is to consume glucose and produce adenosine 

triphosphate (ATP), the cells energy currency. Similar to many other engineered systems whose machinery 

runs on its own energy product, the glycolysis reaction is autocatalytic. The ATP molecule contains three 

phosphate groups and energy is stored in the bonds between these phosphate groups. Two molecules of 

ATP are consumed in the early steps (hexokinase, phosphofructokinase/PFK) and four ATPs are generated 
as pyruvate is produced. PFK is also regulated such that it is activated when the adenosine monophosphate 

(AMP)/ ATP ratio is low; hence it is inhibited by high cellular ATP concentration. This pattern of product 

inhibition is common in metabolic pathways. 
Early experimental observations in Saccharomyces cerevisiae suggest that there are two synchronized 

pools of oscillating metabolites. Metabolites upstream and downstream of phosphofructokinase (PFK) have 
180 degrees phase difference, suggesting that a two-dimensional model incorporating PFK dynamics might 
capture some aspects of system dynamics, and indeed, such simplified models qualitatively reproduce the ex­
perimental behavior. We consider a minimal system with three reactions with a single intermediate metabo­

lite reaction (32)-(34) , for which we can identify specific mechanisms both necessary and sufficient for 

oscillations, 

s+ ay _,_ f 
XI (32) 

XI 
__;. k x (a+ ,B )y + x~ (33) 

y _,_ ky 0 (34) 

In the first reaction, s is some precursor and source of energy for the pathway with no dynamics associated, 
y denotes the product of the pathway (ATP), XI is intermediate metabolites , x~ is one of the by-products 

of the second biochemical reaction, 0 is a null state, a is the number of y molecule that are invested in 

the pathway, and a + ,8 is the number of y molecules produced. A _,_ k B denotes a chemical reaction 

that converts the chemical species A to the chemical species Bat rate k.We choose f(y) = I~~~h , which 
is consistent with biological intuition and experimental data in the case of the glycolysis pathway, where 

V > 0 depends on s, parameter q > 0 captures the strength of autocatalysis, and "(, h > 0 capture the 

strength of inhibition. The function f is not monotone and captures the interplay between the autocatalysis 

and inhibition. A set of ordinary differential equations that govern the changes in concentrations XI and y 
can be written as 

(35) 

(36) 
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for x 1 2 0 and y 2 0. To highlight fundamental tradeoffs due to autocatalytic structure of the system, we 

normalize the concentration such that steady states are fj = 1 and x = -fft. 
Depending on values of parameters q and h, the system can have. another equilibirum point which is 

unstable when (x , y) is stable. Our model (35)-(36) is a general version of model proposed by Doyle et. 

al.. In glycolysis model (35)-(36), expression l+~yh can be interpreted as the regulatory feedback control 

employed by nature which captures inhibition of the catalyzing enzyme. Hence, we can derive a control 

system model for glycolysis as follows 

- kxx + Vyqu 

- kyy +(a+ (3 )kxx- aVyqu, 

(37) 

(38) 

where u is the control input. Our primary motivation behind developing and analyzing such control system 

models for metabolic pathways is to rigorously prove that the tradeoffs in such models are truly unavoidable 

and independent of control mechanisms (linear or nonlinear) used to regulate such pathways. The following 

results assert that essential tradeoffs depend only on autocatalytic structure of the network. 

Hard limits on ideal performance. We denote by y(t; u) the output of the system (37)-(38) with respect to 

control input u . For all possible stabilizing control inputs uo E L 2 ([0 , oo) ), i.e., ]0
00 luo (t) l2dt < oo, we can 

prove that there is a hard limit on the best achievable ideal performance of the system which is characterized 

as the following inequality 

la00

(y(t ;uo) -y)2dt 2 H( x (O) , y(O);a ,(3), (39) 

in which 
a

3
f3kx ( )2 

H( x (O), y(O); a, (3 ) = (aky + f3 kx)2 z (O) - z* , (40) 

and z (O) = x (O) + ~ y(O) and z = x + ~ fj. We define rate of profit p as the ratio of (3 (net production 

of ATP molecules) to a (number of ATP molecules invested in the pathway), i.e ., p = ~· The hard limit 

function ( 40) can be rewritten as 

(32 kx 2 
H(x(O) , y(0) ;(3, p) = p(ky + pkx)2 ( z (O) - z* ) (41) 

Fundamental tradeoff between fragility and net production. When we keep the rate of profit p fixed, a 

fundamental tradeoff between net production of ATP molecules and transient behavior of the system emerges 

as follows: increasing (3 can result in undesirable transient behavior (e.g., large-magnitude oscillation in the 

output of the system) and can increase fragility of the network to small disturbances. For instance, if the 

level of ATP drops below some threshold, there will not be sufficient supply of ATP for different pathways 

in the cell and that can result to cell death. 

Elimination of hard limits by rewiring the network. We consider a modified model of glycolysis pathway 

where autocatalysis and regulating control feedbacks are applied on different biochemical reactions. We 

assume that the enzyme PFK is not regulated. The main motivation for deriving this model is that ATP 

also inhibits PK activity (the second biochemical reaction). This is a simple abstract model that shows how 

to eliminate hard limits in autocatalytic networks. The set of ordinary differential equations governing the 

changes in concentrations x 1 andy is given by 

x - kxx u + Vyq 

- kyy +(a+ (3 ) kxx u - aVyq . 
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where u is the control input. We assume that the desired equilibrium point is still (x , y) in order for a fair 

comparison between the two models and their corresponding hard limits. We can prove that there is no hard 

limit on the L2-norm of the output production, i.e., 

100 

(y(t ; uo) - y) 2 
dt = O(c) (44) 

for all stabilizing state feedback control laws uo for system (42)-(43) with uo E L 2([0, oo)). The notation 

O(c) (the big 0 of E) comes from solving the corresponding cheap optimal control problem. The inequality 

(44) implies that the value of integral can be made arbitrarily small using cheap optimal controllers [34] and 

that the transient stability and performance of the system can be improved arbitrarily with no hard limit. 

6.3 Synchronization and Collision Avoidance in Nonlinear Dynamical Networks of Agents 

In [14] , we introduce and discuss two novel second-order consensus networks with state-dependent cou­

plings of Cucker-Smale type. The first scheme models flocking to synchronization over a network of agents 

where the alignment of the agent 's states occurs over a non-trivial limit orbit that is generated by the internal 

dynamics of each individual agent. The second scheme models the speed alignment of a group of agents 

which avoid approaching each other closer than a prescribed distance. While seemingly different, both of 

these systems can be analyzed using the same mathematical methods. We rigorously analyze both examples 

and reveal their striking similarities. We arrive at sufficient conditions that relate the initial configurations 

and the systems' parameters that give rise to a collective common behavior. There are several impottant open 

problems related to this topic. In [16] , we investigate the stability of a class of nonlinear flocking schemes 
of Cucker-Smale type executed on a finite population of autonomous agents . We use algebraic graph theory 

tools and derive sufficient conditions fo r asymptotic convergence for velocity coordination while the flock 

remains sufficiently connected. In addition, the positions of the agents converge to some predefined relative 

distances. 

7 Centrality Measures in Dynamical Networks 

7.1 Notions of Centrality in Consensus Protocols with Structured Uncertainties 

In this research thrust, we explored how we can utilize notions of systemic performance measures to identify 

central nodes and couplings in large-scale networks [22, 30] . This is particularly important for designing 
robust dynamical networks. In [22, 30], we introduced new insights into the network centrality based not 

only on the network topology but also on the network dynamics. The focus of this effort was on the class 

of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by 

structured additive Gaussian white noise input on the update dynamics of each agent. The performance of 

the network is measured by the expected dispersion of its states in steady-state. This measure is equal to 

the square of the 7-l2-norm of the network, and it quantifies the extent by which its state is away from the 

consensus state in steady-state. We show that this performance measure can be explicitly expressed as a 

function of the Laplacian matrix of the network and the covariance matrix of the noise input. We investigate 

several structures for the noise input and provide engineering insights on how each uncertainty structure 

can be relevant in real-world settings. Then , a new centrality index is defined to assess the influence of 

each agent or link on the network performance. For each noise structure, the value of the centrality index 

is calculated explicitly, and it is shown that how it depends on the network topology as well as the noise 

18 



structure. Our results assert that agents or links can be ranked according to this centrality index and their 
rank can drastically change from the lowest to the highest, or vice versa, depending on the noise structure. 

7.2 Eminence Grise Coalitions: On the Shaping of Public Opinion 

in this effort, we characterize another aspect of notion of centrality in time-varying linear dynamical net­
works. In [6, 7, 22, 29] , we have considered an opinion network of multiple individuals with dynamics 
evolving via a general time-varying continuous time consensus algorithm. In such a network, for an arbi­
trary fixed initial time, a subset of individuals forms an eminence grise coalition (EGC) if the individuals in 
that subset are capable of leading the entire network to agreeing on any desired opinion through a coopera­
tive choice of their own initial opinions. In our research, the coalition members are assumed to have access 
to full profile of the underlying graph of the network as well as the initial opinions of all other individuals. 
We establish the existence of a minimum size EGC and develop a non-trivial set of upper and lower bounds 
on that size. Thus, even when the underlying graph does not guarantee convergence to a global or multiple 
consensus, a generally restricted coalition of individuals can steer public opinion towards a desired con­
sensus provided they can cooperatively adjust their own initial opinions. Moreover, we provide geometric 
insights into the structure of EGC's. Our results are also extended to the discrete time case where the relation 
with Decomposition-Separation Theorem is also made explicit. 
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